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Key Messages

� Integration of phenotyping and multi-omics endotyping can help differentiate asthma and allergic disease subtypes, identify bio-
markers and pathological mediators, predict patient responsiveness to specific therapies, and monitor disease control.

� Most omics studies of asthma and allergic diseases have focused on genomics and transcriptomics approaches; however, increasing
attention is being placed on omics technologies that assess the effect of environmental exposures on disease initiation and
progression.

� Integration of multi-omics data may provide a more comprehensive understanding of the underlying mechanisms of disease through
identification of molecular interactions, intermediate phenotypes and processes, and upstream/downstream molecular targets.

� Although omics technologies have advanced our understanding of the molecular mechanisms underlying asthma and allergic disease
pathology, these technologies are primarily being used as research tools at this time, and several important factors need to be
addressed before they can be effectively used in clinical practice.

� Use of clinical decision support systems, such as laboratory formularies, and integration of these systems within electronic medical
records will become increasingly important as omics technologies become more widely used in the clinical setting.
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exposures on disease initiation and progression. Studies using omics data to identify biological targets and
pathways involved in asthma and allergic disease pathogenesis have primarily focused on a specific omics
subtype, providing only a partial view of the disease process.
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C
onclusion: Although omics technologies have advanced our understanding of the molecular mechanisms
underlying asthma and allergic disease pathology, omics testing for these diseases are not standard of care at
this point. Several important factors need to be addressed before these technologies can be used effectively
in clinical practice. Use of clinical decision support systems and integration of these systems within elec-
tronic medical records will become increasingly important as omics technologies become more widely used
in the clinical setting.
� 2019 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Introduction disease heritability. The missing heritability may be attributed to
Most diseases are caused by a complex, multilevel combination
of genomic, biological, and environmental factors, contributing to a
high degree of variability in disease development, natural history,
and response to therapy.1-3 Disease subtyping has emerged as a
way of identifying subpopulations of individuals with similar dis-
ease features for improved diagnosis and treatment.3,4 Tradition-
ally, patients have been classified into groups according to their
clinical characteristics (ie, phenotypes). However, these classifica-
tions do not provide insight into the functional or pathobiological
mechanisms of the disease within the individual (ie, endotype).5

Omics is the comprehensive assessment of the molecules that
constitute a cell, tissue, or organism.6 Integration of multi-omics
data, such as genomics, proteomics, and metabolomics, along
with clinical data allows for better understanding of disease path-
ogenesis and will be important for predicting, diagnosing, and
treating diseases (Fig 1).7,8

Asthma and allergic diseases, including allergic rhinitis and
atopic dermatitis, are common diseases that often manifest early in
life and persist into adulthood.9 The pathophysiology and expres-
sion of these diseases are influenced by interactions between sus-
ceptibility genes and exposure to environmental factors such as
aeroallergens, secondhand smoke, and infections. Isolated use of
traditional markers, such as lung function parameters and skin
prick testing, and clinical symptoms to diagnose specific subtypes
and manage asthma and allergic diseases have been shown to be
inadequate because of the heterogenous underlying pathophysi-
ology of disease phenotypes.10 Integration of phenotyping and
multi-omics endotyping can help differentiate asthma and allergic
disease subtypes, identify biomarkers and pathological mediators,
predict patient responsiveness to specific therapies, and monitor
disease control.8,11,12

We aim to briefly review the state of omics science specific to
asthma and allergic diseases and discuss the current and potential
applicability of omics in clinical disease prediction, treatment, and
management. Previous reviews have focused on omics as they
relate to specific allergic diseases, primarily asthma.5,13-17 Our re-
view is uniquely framed to focus on omics subtypes, referencing
current applications of each subtype within the field of asthma and
allergic diseases, including research applications.
Applied Omics in Asthma and Allergic Diseases

Genomics

Genomics is the study of variations in the deoxyribonucleic acid
(DNA) and their association with disease onset, severity, exacer-
bation, response to therapeutic agents (pharmacogenomics), or
patient prognosis (Table 1).16,18 A large portion of the susceptibility
to asthma and allergic diseases is attributed to genomic contribu-
tions.19 Many genes have been identified as contributing to the
development of asthma and allergic diseases, including the well-
replicated 17q21 locus (associated with childhood-onset wheeze)
and filaggrin (FLG) gene (associated with atopic dermatitis).13,16

However, these genes account for only a small proportion of
rare variants, geneegene, or geneeenvironment interactions. Lack
of replication across studies and unknown functional implications
of genes implicated in asthma and allergic disease pathogenesis
have hindered the use of genetic risk factors in predicting disease
onset and exacerbation in the clinical setting.19,20 Further assess-
ment of polygenetic scores of several genes may help in prediction
and prognosis of such complex diseases.

The potential role of pharmacogenomics in the clinical man-
agement of asthma and allergic diseases is being increasingly
recognized. Because many susceptibility genes are shared across
allergic diseases, targeted therapeutics may be used to treat mul-
tiple diseases.20,21 Most pharmacogenomics studies of asthma have
focused on the clinical response to commonly prescribed medica-
tions, such as bronchodilators, leukotriene modifiers, and inhaled
corticosteroids (ICSs), through candidate-gene approaches.20,22

Studies assessing the role of short- and long-acting bronchodila-
tors have mainly focused on ADRB2 (adrenoceptor beta 2).23

Patients with asthma with a homozygous genotype for a variant
substituting at amino acid 16 within ADRB2 have been shown to
have decreased lung function and increased exacerbation with
regular short-acting beta agonist use. Studies assessing the
response of these patients to long-acting beta agonists have been
conflicting.22,23 Variants in the arachidonate 5-lipoxygenase
(ALOX5), leukotriene C4 synthase (LTC4S), leukotriene A4 hydro-
lase (LTA4H), and cysteinyl leukotriene receptor 2 (CYSLTR2) genes
have been associated with response to leukotriene modifiers22,23;
however, replication of these findings are needed.23 Although a
large number of studies have assessed the genetic contribution to
ICS response, findings have been inconsistent. Variants within the
FCER2 (fc fragment of IgE receptor 2) gene have shown the most
promising results, with children with asthma with these variants
showing poor ICS response.16 To increase clinical applicability or
pharmacogenomic findings, research has shifted toward genome-
wide association studies (GWAS). As a result, many novel thera-
pies are being developed and evaluated.20
Epigenomics

Although genomics is known to play a large role in susceptibility
to asthma and allergic diseases, the increase in incidence and
prevalence of these diseases observed globally over the past 70
years cannot be explained by genetic predisposition. Environ-
mental and lifestyle factors must play an important role in the
initiation and persistence of disease in predisposed individuals.24

Epigenomics is the study of potentially reversible modifications of
the chromatin (measured by DNA methylation levels, histone
modifications, or noncoding ribonucleic acid [RNA]) due to normal
cellular repair or environmental modifiers.24,25 Epigenomics may
be used to better understand the influence of environmental and
lifestyle factors on the underlying mechanisms that contribute to
the development of asthma and allergic diseases, which could aid
in the development of preventive strategies for susceptible
individuals.24

Although epigenomics technology and methodologies are less
developed than genomics and transcriptomics approaches,17



Population with Disease

Disease Subtypes

Improved Disease Prediction, Prevention, Management, and Treatment

Clinical Data

Age
Race/Ethnicity

Gender
Socio-Economic Status

Anthropometric Measurements
Lifestyle Factors
Comorbidities

Environmental exposures
Response to Treatment

Phenotype Characterization

Phenotype: Set of clinically observable
characteristics of an individual

Endotype characterization

Endotype: functional or pathobiological
mechanism of the disease occurring

within the individual

Genome
Transcriptome

Proteome
Metabolome

Lipidome
Microbiome
Exposome

Figure 1. Framework for integration of clinical and multi-omics data for improved disease subtyping within the disease population.
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studies aimed at identifying epigenomic signatures within asth-
matic and allergic disease populations are on the rise. The value of
DNA methylation signatures as biomarkers of diagnosis or thera-
peutic response has been illuminated in studies of other complex
diseases, such as cancer and autoimmune diseases, suggesting its
potential in understanding modifiable alterations in DNA that
predispose to asthma and allergic diseases. Epigenome-wide as-
sociation studies (EWAS) could be used to identify individuals who
are allergy-prone before disease onset.24 Epigenomic signatures
can be inherited,17 and in utero exposure to farms, air pollution, and
tobacco smoke have been shown to alter DNA methylation signa-
tures associated with development of asthma and allergic disease
early in life.16,24,26 DNA methylation signatures also have been
shown to outperform conventional biomarkers, such as allergen-
specific immunoglobulin E (IgE) levels and skin prick tests, in the
prediction of food allergy, suggesting that these signatures could
potentially be used as a safe alternative to food challenges.24,27

A limited number of studies have assessed the effect of asthma
and allergic disease treatment on the epigenome.16,24 Demethyla-
tion of FOXP3 (forkhead box P3), a gene that is only expressed by
regulatory T cells and is reduced among allergic children, has been
observed in childrenwho develop tolerance for IgE-mediated cow's
milk allergy after dietary intervention and peanuts after oral im-
mune-therapy.24,28,29 Epigenomic changes in response to ICS and
biological agents have been identified, but further replication is
needed.16,30 The use of DNA methylation inhibitors, such as 5-
azacytidine, in patients with asthma and allergic diseases has
been assessed; however, results are conflicting. In the future, the



Table 1
Features of Omics Data

Omics subtype Measured biomarker Sample type Data collection technologies

Genomics DNA Any tissue that has a nucleusa Genotyping arrays
NGS
Exome sequencing

Epigenomics DNA methylation levels, posttranslational
histone modifications, non-coding RNA (e.g.,
microRNAs)

Tissue-specific (sera, other bodily fluids, or
tissues may be used)

NGS
DNA methylation analysis with arrays
Small RNA sequencing

Transcriptomics RNA Tissue-specific (sera, other bodily fluids, or
tissues may be used)

Probe-based arrays
RNA-Seq

Proteomics Proteins Tissue-specific (sera, other bodily fluids,
or tissues may be used)

MS

Metabolomics Metabolites Tissue-specific (sera, other bodily fluids, or
tissues may be used)

MS
NMR
Semiconductor metal oxide

Lipidomics Lipids Tissue-specific (sera, other bodily fluids,
or tissues may be used)

MS
NMR

Microbiomics Microorganisms Tissue-specific (sera, other bodily fluids, or
tissues may be used)

NGS

Exposomics Any biomarker of exposureb Dependent on the biomarker(s) assessedc Dependent on the biomarker(s) assessed

Phenomics Disease states, symptoms, lab measurements,
vitals

N/Ad Extraction from electronic health record,
surveys, physical exams, measurements, etc.

DNA, deoxyribonucleic acid; NGS, next generation sequencing; RNA, ribonucleic acid; MS, mass spectrometry; NMR, nuclear magnetic resonance spectroscopy; N/A, not
applicable.
aBlood and saliva are commonly used.
bExamples of biomarkers of environmental exposures include vitamins (diet), polycyclic aromatic hydrocarbons (pollutant), and organohalogens (pesticide).
cSamples types may include sera, urine, saliva, exhaled gas, tissue, etc.
dPhenomics studies use patient-level data extracted from electronic health records, surveys, physical examinations, measurements, and so forth. These data are sometimes
linked with genetic information.
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CRISPR/Cas9 gene-editing system could potentially be used to
reverse environmentally induced changes in the epigenome before
disease onset.24,30

Transcriptomics and Proteomics

Gene expression is a dynamic process that is highly influenced
by many factors, including age, sex, developmental stage, health
status, tissue/cell type, time of day, and exposure to allergens, in-
fections, and medications.16,31 Transcriptomics and proteomics
investigate 2 important aspects of gene expression, RNA (ie, the
molecular intermediate between DNA and proteins) and proteins
(ie, the primary functional product of DNA).18 Omics technologies
are being used to identify differential gene expression patterns
between those with and without disease, leading to mechanistic
hypotheses and biomarker development.20,31

To analyze the massive amount of data that are generated
through gene expression analyses, sophisticated analytical
methods are needed.16 Such techniques have been applied in large-
scale projects such as the Unbiased Biomarkers in Prediction of
Respiratory Disease Outcomes (U-BIOPRED) consortium, which
aimed to identify asthma endotypes through the characterization
of gene expression profiles.16,32 Although transcriptomics ap-
proaches are now widely used in asthma and allergic disease
research,13,17 untargeted proteomics research has emerged more
slowly, which may be attributable in part to the diversity of tech-
nologies used.31

Transcriptomics and proteomics studies of asthma and allergic
diseases have been most fruitful in identifying disease endotypes.
Differences in gene expression patterns between childhood and
adult-onset asthma suggest that distinct mechanisms underly
disease onset.16 Sputum proteomics has been used to identify
multiple sub-endotypes of eosinophil- and neutrophil-mediated
asthma.17 Transcriptomics also has been used to investigate
mechanisms of asthma and allergic disease severity, exacerbation,
and response to treatment. Genes involved in bronchodilation,
reduction of inflammation, interferon response, and expression of
CD8þ T cells have been shown to be differentially expressed in
children with severe asthma compared with children with mild
asthma.31 Increased expression of immune cytokines and chemo-
kines have been shown to correlate with disease severity and
progression in atopic dermatitis.15 Studies aimed at understanding
the underlying mechanisms of asthma exacerbations in children
have identified several differentially expressed genes during exac-
erbation related to immune responses against viral infections and
potential environmental exposures, such as smoke, pollutants, or
allergens.16,33 A few studies have assessed transcriptomics response
to glucocorticosteroid treatment34; however, further replication
studies are needed. Although transcriptomics and proteomics
studies in asthma and allergic disease have yet to yield new diag-
nostic tests or drugs, the growing sample size and robust design of
ongoing studies show potential for clinical translation in the near
future.31
Metabolomics

Metabolomics measures the total repertoire of low-molecular-
weight products of cellular metabolism (eg, amino acids, fatty
acids, sugars, and lipids) present in cells, tissues, organs, and bio-
logical fluids.13,17,35 The identities, concentrations, and fluxes of
these metabolites result from the complex interplay of the genome,
gene expression, protein translation, and the environment.35

Because many cellular processes are regulated by metabolites,
they can act as indicators of homeostatic imbalances.36 Metab-
olomics, thus, can be used to improve our understanding of disease
pathogenesis, assess biological responses to risk factors, identify
susceptibility biomarkers, and monitor disease progression.35
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Metabolomics approaches are particularly appealing for the
study of asthma and allergic diseases, which are highly influenced
by hosteenvironment interactions.35 Although limited in number,
metabolomics studies have provided unique and novel insights into
allergy and asthma profiling at the molecular level. Most metab-
olomics studies have focused on biomarker discovery to identify
metabolites that distinguish between asthma/allergic disease and
healthy phenotypes and asthma severity.13,17,35 Noninvasive bio-
markers, such as volatile organic compounds in exhaled breath,
have shown promising roles in the diagnosis, monitoring, and
treatment of patients with asthma and could be especially useful
for the assessment of airway inflammation in young children.37

However, validation of these biomarkers in independent cohorts
of biological samples is needed to demonstrate clinical utility.17,31 In
addition to the global metabolic profiles of individuals with asthma
and allergic diseases, metabolomics can provide deeper insights
into the pathophysiology of distinct asthma and allergic disease
phenotypes. Accurate prediction of phenotypes using metabolic
biomarkers may have the greatest clinical impact, encouraging
increased utilization of prospective study designs in metabolomics
research.38

Lipidomics

Lipids have both structural and functional roles, acting as the
primary component of cellular membranes, energy reservoirs, and
mediators in cellular mechanisms such as signal transduction,
immunity, and inflammation.39,40 More than 40,000 lipids have
been documented.40,41 Lipidomics, a sub-field of metabolomics,
aims to understand the structure and function of a given cell or
organism's lipidome and how lipoproteins are affected by diseases
and treatments.39,40

Although the emergence of more sophisticated techniques, such
as mass spectrometryebased lipidomics, has facilitated the
expansion of knowledge of the effects of lipids on asthma and
allergic diseases, most studies have focused on targeted profiling of
lipid mediators for treatment development. Lipid mediators, such
as leukotrienes, platelet-activating factor, prostaglandins, and
sphingolipids, modulate the immune system in response to aller-
gens and, thus, have been primary targets for therapeutic in-
terventions. The leukotriene pathway, which promotes bronchial
smooth muscle constriction and increases vascular permeability,
has been the most successfully targeted, with 2 classes of drugs
currently on the market, cysteinyl leukotriene receptor 1 (CysLTR1)
antagonists and 5-lipoxygenase inhibitors.42 Clinical trials assess-
ing the efficacy of antagonists of platelet-activating factor, such as
rupatadine, which is not currently available in the United States,
and prostaglandin receptor agonists/antagonists in patients with
asthma and allergic diseases have been performed or are currently
underway.42-44 Although findings from animal studies assessing
the efficacy of anti-sphingosine 1-phosphate compounds in allergic
disease management have been promising, no clinical trials are
currently underway.42,45

Microbiomics

The microbiome broadly describes the microorganisms
(including bacteria, viruses, and fungi) colonizing the human body,
their genes, and their interactions with each other and their
host.18,46 It is exceedingly complex, composed of trillions of mi-
croorganisms, whose composition varies across body sites, time,
and between individuals and is highly influenced by environmental
and dietary factors.18,47 Alterations in the composition or metabolic
activity of the microbiome can negatively impact immune function
because of the intimate crosstalk between the 2 networks.47 The
immunomodulatory mechanisms of microbial dysbiosis are
beginning to be elucidated using omics technologies, such as
shotgun metagenomics sequencing and metatranscriptiomics.47,48

Whether alterations in the composition of the microbiome pre-
cede or follow immune responses in asthma and allergic diseases
remains unclear; however, prospective birth cohort studies have
begun to shed light on the temporal relationship.47

Microbiome-based strategies for prevention, treatment, and
management of asthma and allergic diseases have focused on tar-
gets of innate immunity and therapies altering microbial commu-
nities, including prebiotics, probiotics, and microbial
transplantation.48 Drugs targeting lung inflammation, such as
macrolide antibiotics and corticosteroids, have shown beneficial
effects for treatment of certain asthma phenotypes. However, the
airway microbiome may modulate the response to these therapies,
suggesting that microbiome phenotyping of individuals before
administration may be beneficial for treatment effectiveness.48,49

Although findings from studies assessing the effectiveness of pre-
biotic (nondigestible fiber that stimulates the growth of beneficial
microorganisms) and probiotic (live microorganisms) use in pre-
venting asthma and allergic diseases have been promising, partic-
ularly for prevention of eczema,46-48 no recommendations have
been made for prebiotic or probiotic use in patients with asthma or
allergic diseases.47 Several clinical trials are underway to assess the
effectiveness of microbiome transplants, including vaginal swab-
bing, skin creams, and oral encapsulated fecal microbiota, in pre-
venting and treating asthma and allergic diseases.50

Exposomics

The exposome defines the totality of an individual's external (eg,
climate, traffic, and pollutants) and internal (eg, metabolism,
inflammation, and aging) environmental exposures throughout
their life course.51,52 Unlike epigenomics, which is used to assess
modifications to the genome specifically, exposomics comprehen-
sively assesses multi-omics responses to environmental exposures.
These response patterns, ideally characterized from longitudinal
biomonitoring, could then be used to provide an individualized
disease risk profile for targeted prevention. Using a more holistic
approach in assessing the effect of environmental exposures on
disease will likely be more informative in predicting complex dis-
eases such as asthma and allergies than assessing the separate ef-
fects of individual exposures.51

Although a growing number of studies have assessed the role of
specific environmental exposures in the pathogenesis of asthma
and allergic diseases, challenges related to measurement harmo-
nization, feasibility of exposure assessment, integration of multi-
factorial data, and methods of discovery analysis have hindered
exposome-wide analyses in this field.51 In an effort to overcome
some of these issues, large-scale initiatives, such as the Human
Early-Life Exposome (HELIX) and EXPOsOMICS projects, have been
launched with the goal of refining exposomics characteriza-
tion.53,54 Additionally databases, such as the World Health Organ-
ization's Exposome-Explorer, can be used to identify biomarkers of
environmental exposures for biomonitoring or studies of disease
causes.55

Phenomics

Phenomics is the systematic study of a large set of phenotypes
used to describe an organism. In biomedical informatics, the phe-
nome is defined as symptoms, physical findings, and disease di-
agnoses that describe patients for the purposes of medical care.
Phenomics can be used to identify and describe disease subtypes or
study pleiotropy (ie, multiple phenotypes arising from the same
genetic alteration).56

The electronic health record (EHR) is an important resource for
the study of human phenomics. Compared with observational
research cohorts that only capture a prespecified set of phenotypes,
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the EHR contains information on a vast array of phenotypes that are
pertinent to medical care.57 Many health care systems now link
EHR and genetic information, obtained through biospecimen
collection, which has led to the development of phenome-wide
association studies (PheWAS).57-61 Although originally designed
to study the relationship between a large set of human phenotypes
and a single genetic variant, PheWAS applications have since
broadened to assess associations between phenotypes to identify
comorbidities, subtypes, or health service outcomes (eg, length of
hospital stay and treatment-related complications) related to a
specific disease.57

A mounting body of evidence has demonstrated the utility of
EHR data in genomics research. Electronic health records have been
used to replicate known genetic associations with asthma first
discovered in observational cohorts.58,62 Phenome-wide associa-
tion studies have been used to identify novel asthma risk loci and to
discover pleiotropy of asthma-associated genetic variants with
atopy and leukemia and allergic rhinitiseassociated genetic vari-
ants with metabolic disease and diabetes.58-61 Phenome-wide
association studies has also been used to identify new therapeu-
tic targets as well as predict adverse drug events. One study iden-
tified asthma as a potential side effect of drugs that inhibit PNPLA3
(patatin-like phospholipase domain containing 3), a potential
therapeutic for liver disease.63

Electronic health recordedriven phenomics has been used to
study monogenic, or Mendelian, diseases. Because variants within
Mendelian disease-causing genes have been shown to contribute to
complex diseases,64 assessment of the association between these
variants and asthma and allergic disease risk is warranted. The
Online Mendelian Inheritance in Man (OMIM), a catalog of mono-
genetic diseases, describes many diseases that are characterized, in
part, by traits related to asthma and allergic diseases.65 A method
called the phenotype-risk score (PheRS) was recently developed to
capture Mendelian phenotype patterns using EHR data and inform
on the contribution of rare variants to common diseases.64 Rare
genetic variants may be used to link some patients' asthma to
Mendelian diseases with targeted therapies.

Conclusion

Clinical Decision Support SystemsdEHRs

As omics technologies become more widely used in the clinical
setting, integration of omics data within EHRs will become
increasingly important for interpretation and clinical decision
support.66,67 However, EHRs, which have traditionally been struc-
tured to provide a commonworkflow for health care providers and
centralized documentation of billing and clinical monitoring and
decisions, are not suited to accommodate omics data in their cur-
rent form.66 Next-generation EHRs will need increased storage
capacity, structured data formats to allow return of omics results to
physicians and patients, links to reference sources to aid in the
interpretation of results from Clinical Laboratory Improvement Act
(CLIA)-certified clinical laboratories and genetic counselors, and
systems for reprocessing archived data and updating in-
terpretations as new scientific knowledge becomes available.66,67

To begin this transition, initiatives such as the Electronic Medical
Records and Genomics (eMERGE) network have been established to
develop methods and best practices for integrating omics data into
the EHR system and returning results to patients.68

Ethical, legal, and privacy considerations for data storage and
sharing are also of concern with the integration of omics data in
EHRs. Although the federal Health Insurance Privacy and
Accountability Act (HIPAA) imposed privacy standards on the use of
protected health information, such as names and birth dates,69

omics data are not explicitly mentioned in the Act and, therefore,
are potentially vulnerable to privacy violations.66,70 Frameworks for
the storage and management of omics data and consent have not
been widely implemented;66 however, some institutions have
established guidelines for physical and technological security
controls to help protect omics data.70,71 Furthermore, issues related
to recontact of potentially affected patients once new scientific
knowledge becomes available and return of results, particularly
from genomics testing, to potentially affected familymembers need
to be carefully assessed and strategized.66

Laboratory Formularies

The use of omics technologies in clinical care has been some-
what limited to those areas where data and validation have shown
sufficient laboratory sensitivity, specificity, and reproducibility, as
well as clinical validity and utility. The areas that have been brought
forward as standard of care include cancer diagnosis and therapy,
rare or inherited disease diagnosis and risk assessment, and phar-
macogenomics.72 In an effort to provide more affordable, acces-
sible, and high-quality health care in the United States, attention
has been placed on reducing hospitalizations, readmissions, and
therapeutic costs. However, management of diagnostic and
screening testing is also important to health care reform because
the number of these tests available to clinicians is rising and many
are expensive and require extensive background knowledge for
correct interpretation.73 To promote the appropriate utilization of
laboratory testing, some institutions have implemented laboratory
formularies.74 These programs provide strategic guidance for
ordering clinicians through evidence review and expert consulta-
tion of each test's clinical utility, cost, and interpretation. Successful
implementation requires ongoing collaboration of hospital ad-
ministrators, clinical and laboratory staff, and information tech-
nology developers.73,74 Although omics testing for asthma and
allergic diseases are not standard of care at this point, use of a
laboratory formulary structure to introduce and advance testing for
these diseases would provide a structure to obtain strong evidence
and appropriate utilization management.

Integrated Omics

Most studies using omics data to identify biological targets and
pathways involved in asthma and allergic disease pathogenesis
have primarily focused on a specific omics subtype.13,75 Although
important insights have been gained from these studies, they
provide only a partial view of the disease process.13 Integration of
multi-omics data provides a more comprehensive understanding of
the underlying mechanisms of disease through identification of
molecular interactions, intermediate phenotypes and processes,
and upstream/downstream molecular targets.13,76 However,
amplification of issues related to data acquisition, harmonization,
storage, quality, and analysis have slowed the integration and
simultaneous assessment of multiple, multi-dimensional omics
subtypes. Because multi-omics approaches often require the
collection and processing of larger volumes of multiple sample
types, patient burden and cost-effectiveness also need to be
weighed when performing these analyses.13,18 Several large-scale
consortia, such as the Mechanisms of the Development of AL-
Lergy (MeDALL),9 U-BIOPRED,32 and Environmental influences on
Child Health Outcomes-Children's Respiratory and Environmental
Workgroup (ECHO-CREW),77 have been established to study and
develop approaches to facilitate clinical translation of multi-omics
data for patients with asthma and allergic diseases.

Clinical Implementation: Current Challenges and Progress

Although omics technologies have advanced our understanding
of the molecular mechanisms underlying asthma and allergic dis-
ease pathology, these technologies are primarily being used as
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research tools at this time, and several important factors need to be
addressed before they can be used effectively in clinical practice.
Validation and replication of findings from previous studies is
essential, necessitating standardization of data collection, pro-
cessing, and analysis.13,18 Large-scale initiatives and data re-
positories, such as the UK Biobank78 and the Biologic Specimen and
Trans-NIH BioMedical Informatics Coordinating Committee
(BMIC),79 have facilitated the generation of robust biomedical
datasets to improve research efficiency, increase collaboration, and
facilitate validation of findings.67,80 Institutions, such as the Food
and Drug Administration81 and the American College of Medical
Genetics and Genomics,82 have created guidelines for collection
and processing of biospecimens and development of standard data
storage formats and data interpretations.80 Additionally, stan-
dardized clinical diagnostic codes and phenotypic terminology
have been established to allow consistent information exchange
and comparability of diseases across populations.80

Infrastructures for clinical informatics and increased cross-
disciplinary training for health professionals are also key for the
successful application of omics technologies and have been high-
lighted in projects such as CASyM (Coordinating Action Systems
Medicine).83-85 Many online and offline courses are now being
offered to improve the analysis and interpretation of omics data.80

With a concerted collaborative effort from patients and experts
with diverse backgrounds, including clinicians, bioinformaticians,
medical laboratory scientists, lawyers, ethicists, and hospital ad-
ministrators, it is possible for omics technologies to transform and
improve patient health and the health care system.83,84
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