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Abstract: Allergy and asthma pathogenesis are associated with the dysregulation of metabolic
pathways. To understand the effects of allergen sensitization on metabolic pathways, we conducted a
multi-omics study using BALB/cJ mice sensitized to house dust mite (HDM) extract or saline. Lung
tissue was used to perform untargeted metabolomics and transcriptomics while both lung tissue and
plasma were used for targeted lipidomics. Following statistical comparisons, an integrated pathway
analysis was conducted. Histopathological changes demonstrated an allergic response in HDM-
sensitized mice. Untargeted metabolomics showed 391 lung tissue compounds were significantly
different between HDM and control mice (adjusted p < 0.05); with most compounds mapping to
glycerophospholipid and sphingolipid pathways. Several lung oxylipins, including 14-HDHA,
8-HETE, 15-HETE, 6-keto-PGF1α, and PGE2 were significantly elevated in HDM-sensitized mice
(p < 0.05). Global gene expression analysis showed upregulated calcium channel, G protein–signaling,
and mTORC1 signaling pathways. Genes related to oxylipin metabolism such as Cox, Cyp450s,
and cPla2 trended upwards. Joint analysis of metabolomics and transcriptomics supported a role
for glycerophospholipid and sphingolipid metabolism following HDM sensitization. Collectively,
our multi-omics results linked decreased glycerophospholipid and sphingolipid compounds and
increased oxylipins with allergic sensitization; concurrent upregulation of associated gene pathways
supports a role for bioactive lipids in the pathogenesis of allergy and asthma.

Keywords: multi-omics; allergy; asthma; metabolomics; lipidomics; oxylipins; transcriptomics; house
dust mite

1. Introduction

Asthma is characterized by airway hyper-responsiveness, mucus hypersecretion,
infiltration of the airway by eosinophils and type 2 (T2) immune response, and airway
remodeling [1,2]. Evidence suggests that cytokine imbalance and metabolic perturbance
are responsible for the inflammation and tissue damage resulting from asthma [3]. In
addition to increased inflammation, both systemically and locally in the lung, this per-
turbance results in increased oxidative stress, decreased antioxidants, and increased
inflammatory cytokine markers [4–6]. However, our understanding of allergic asthma eti-
ology and biological mechanisms is incomplete. This is partly due to the invasive nature
of lung sampling techniques, which is a major impediment in developing prophylaxis
and treatment for asthma.

Experimental animal models were developed to mimic the clinical symptoms and
pathological sequalae of asthma to overcome the challenges with studying relevant human
tissue. The mouse model of house dust mite (HDM)-induced allergic airways disease
mimics many of the features of human asthma symptoms, including airway hyperreactivity
and airway inflammation, and is increasingly used to elucidate asthma/allergic airways
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pathology and to evaluate new therapeutic agents [7]. However, allergic airways/asthma
etiology and biological mechanisms in this experimental model were not well characterized.

The application of high throughput ‘omics’ approaches to both human studies and
animal models has shown great potential in identifying pathological mechanisms and
biomarkers of asthma. For example, metabolomics measures a variety of small molecules
that are part of a biological system and have potential to capture the cellular response to
past and present exposures relevant to asthma etiology [8–10]. Since lung tissue provides
an integrated, multi-cellular platform, a metabolomic investigation utilizing lung tissues
may better illustrate the etiology of allergic airways/asthma and will have a significant
translational value compared to those performed in isolated cells or in vitro systems [11].
Metabolomic analysis of bronchoalveolar lavage fluid (BALF) [12,13] and lung tissue [14]
in sensitized mice and BALF and sputum of patients with allergic asthma [15,16] have
uncovered a panel of potential allergic airway-related metabolic biomarkers and pathways.
However, most of these studies did not take a multiplatform and systems approach and,
hence, may have missed important relationships.

To date, various ‘omics’ approaches increasingly implicated lipids as biomarkers
for the pathogenesis and severity of asthma symptoms [17–20]. Specifically, excessive
oxidative stress and its endogenous and exogenous reactive oxygen and nitrogen species,
decreased activities of antioxidants, and increased production of bioactive lipids that
are synthesized from arachidonic acid (AA) are all associated with airway inflammation
and, consequently, with allergic asthma and its severity [21–24]. Conversely, the roles of
endogenous bioactive oxylipins derived from eicosapentaenoic acid (EPA) and docosa-
hexaenoic acid (DHA) as counter-regulators of inflammation and activators of resolution
is still being established [25–27]. These bioactive lipids, termed oxylipins, are rapidly
metabolized and are challenging to detect through untargeted metabolomics analysis.
However, targeted analysis of these molecules using tandem liquid chromatography
mass spectrometry (LC/MS/MS) was used extensively in the analysis of these important
lipid molecules [17,28,29].

Furthermore, since genetics plays a major role in regulation of the metabolome [30]
and asthma etiology, integrating metabolomics with gene expression data enhances the
potential to unravel relevant pathways in diseases with gene-X-environmental etiological
components such as asthma and allergic airways [31,32]. Overlaying molecular pathways
based on metabolomics and gene expression data help to extract more insightful and
comprehensive snapshots of biological systems and molecular processes in the etiology
of asthma. Therefore, the aim of this study is to understand the upstream molecular
processes underlying allergic asthma etiology in HDM-induced allergic mice using a multi-
omics approach that comprises untargeted metabolomics, targeted analysis of oxylipins,
and transcriptomics of lung tissue. This integrated analysis of metabolomics, lipidomics,
and gene expression data provides additional insight into novel links between metabolic,
immune, and neuronal signaling pathways triggered by HDM sensitization which can be
investigated for possible intervention targets in future studies.

2. Materials and Methods
2.1. Animals

Six-week-old male BALB/cJ (BALB) mice were obtained from Jackson Laboratories
(Bar Harbor, ME). This strain was chosen because it is Th2-dominant and commonly used
in lung allergic airway models due to their classic allergic responses, including increased
Th2-immune responses, eosinophilia, and airway hyperresponsiveness [33,34]. The mouse
numbers used for each endpoint were based on animal requirements for significance in
previous studies [35,36] as well as a power analysis. All mice were maintained on an
ovalbumin (OVA)-free Teklad diet (Envigo). Mice were acclimated for one week prior
to sensitization. Studies were conducted under a protocol (#01031) approved by the
Institutional Animal Care and Use Committee at University of Colorado Anschutz Medical
Campus (Aurora, CO).
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2.2. HDM Sensitization

Mice were sensitized to sterile filtered 25 µg HDM extract (HDM, GREER Labs; in
35 µL saline) or saline through internasal (i.n.) administration for 5 days/week for week 1
and then challenged with 25 µg HDM (35 µL saline) or 35 µL saline for 3 days/week for
weeks 2–4 of the experiment (Figure 1). All mice used in this study were treated at the
same time and were euthanized 24 h following the final dose of HDM in week 4. The HDM
sensitization dose, frequency, and duration was based on a recently published 4-week
HDM-induced allergic airways inflammation mouse model [37].
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Figure 1. Experimental design for mice house dust mite (HDM) sensitization and challenge and
sample collections. Mice were sensitized (week 1) or challenged (weeks 2–4) with HDM or saline
(control) followed by euthanasia 24 h following final dose. i.n. = internasal. The blue arrow indicates
timing of HDM or saline administration.

2.3. Differential Cells Counts and Histology

Blood was collected via cardiac puncture and, following processing using EDTA
tubes (Thermo Fisher Scientific, Waltham, MA 02451, USA), plasma was snap frozen.
Bronchoalveolar lavage fluid (BALF) was collected with Hanks balanced salt solution
(HBSS), described previously [38,39], using n = 5 mice per group. Cell differentials and
total protein (reflective of lung hyperpermeability) was performed on BALF, as performed
in Cho [39] and Bauer [36]. Following lung perfusion with sterile saline, these lungs
were also inflation fixed (n = 5) with 10% neutral buffered formalin for 24 h, followed
by processing by the University of Colorado Cancer Center (UCCC) Pathology Shared
Resource. Hematoxylin and eosin (H&E), periodic acid–Schiff (PAS), and trichrome stained
slides were performed for each of these mouse lungs (n = 5). In another group of mice
(n = 4), non-lavaged and non-perfused lung lobes (with no lymph nodes) were divided for
untargeted metabolomics, targeted lipidomics, and RNA transcriptomics assays.

2.4. Untargeted Metabolomics:

Lung samples (n = 4 for control and n = 4 for HDM) for untargeted metabolomics
analysis were prepared as previously described [40–42]. Briefly, lungs were homogenized
using a bead homogenizer with methanol and small molecules were extracted from 100 µL
lung tissue homogenate using methyl tert-butyl ether (MTBE). Aqueous and lipid fractions
were analyzed separately by liquid chromatography mass spectrometry (LC/MS) on a
quadrupole time-of-flight (6545 QTOF, Agilent Technologies, Santa Clara, CA 95051, USA)
mass spectrometer using published methods [13,43], except that 10 µL of the lipid fraction
samples were injected on the instrument. All samples were prepared in a single batch and,
therefore, no batch-to-batch quality control (QC) sample was used to control for sample
preparation variance. However, all experimental lung samples were spiked with 29 labeled
authentic standards and an aliquot of each sample was pooled post sample preparation
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to make a pooled QC sample to control for LCMS instrument variance [13,43]. Following
analysis of QC data to ensure reproducibility (see Text S1 for details on quality control),
metabolomics spectral data were extracted and recursively filtered, aligned, and binned
using Agilent Profinder ver 10.0 SP1 and Mass Profiler Professional Ver. 15.1 (MPP, Agilent
Technologies, Santa Clara, CA 95051, USA) [42]. Compounds found in at least one blank
were removed. Remaining compounds were limited to those found in 75% of samples
in at least one group (HDM or control). Aqueous samples were additionally limited to
compounds eluting before 11.5 min since compounds eluting past this time had poor
signal to noise ratios. Normalization was conducted using adjustment to total signal for all
compounds not found in blanks.

Compounds were annotated by searching a custom in-house database comprised
of data from authentic standards and public databases consisting of compounds from
METLIN, Lipid Maps, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Human
Metabolome Database (HMDB), using accurate mass and isotope ratios. These compounds
were designated Metabolomics Standards Initiative (MSI) level three [13]. Compounds
matching in retention time and mass to compounds in the in-house database were desig-
nated MSI level one.

2.5. Quantitative Targeted Analysis of Oxylipins (Lipidomics)

Liquid chromatography tandem mass spectrometry (LC/MS/MS) and isotope di-
lution was used to quantitate 87 pro-inflammatory and pro-resolving lipids and iso-
prostanes in plasma and lung using a single, validated assay [44,45]. Briefly, samples
were extracted with methanol followed by solid phase extraction to enrich for oxylip-
ins. Internal standards, comprised of labeled analogs corresponding to 12 molecules of
various lipid subclasses, were added prior to extraction. Samples were analyzed using
a triple quadrupole mass spectrometer (QQQ 6490, Agilent Technologies, Santa Clara,
CA 95051, USA) as previously described [44–46].

2.6. Global Gene Expression

The RNA preparation and sequencing was carried out at the UCCC Genomics
Core. mRNA was isolated from mice lung tissue using TRI-Reagent (Sigma-Aldrich,
St. Louis, MO 68178, USA) followed by Zymo-Seq Ribo Free Total RNA Library Kit for the
library preparation. cRNA (1.5 µg) was used for whole-genome gene expression direct
hybridization assay with mouse WG-6 v2.0 Expression Beadchip (Illumina, San Diego,
CA 92122, USA), following the manufacturer’s instructions. The average reads/bases
quality for all the samples in the lane was at least 88% ≥ Q30. The filtered reads
distribution for all the samples in the lane ranged from approximately 11 M to 18 M
clusters (22 M to 36 M paired end reads). Sequence data quality was evaluated using
fastqcr, an R wrapper for freely available quality control software (FastQC) [47,48]. The
software suites of Rsubread [49] and R package were used for mRNA read mapping,
with the reference mice genome (GRCm38 primary assembly genome) and the feature
counts function to quantify read counts.

2.7. Statistical Analysis

Compounds from untargeted metabolomics were assigned class hierarchy if they had
a KEGG compound number provided and were annotated by compound class, subclass 1,
subclass 2, subclass 3, and subclass 4; this provided several options to analyze and visualize
data [50]. Changes in compounds between HDM and control mice were evaluated by multi-
ple t-testing using a false discovery rate (FDR) of 5% and fold change for compounds were
generated [50]. The number of significantly changed compounds between HDM-sensitized
and control mice were counted based on the KEGG class annotation and visualized with bar
plots. Similarly, compound abundance was aggregated by KEGG subclasses and compared
between HDM-sensitized mice and control and visualized with boxplots [50]. Enrichment
and pathway analyses were conducted for significantly different compounds. Metabolic
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reaction pathways were predicted to identify active and suppressed metabolic conversion
based on upregulated and downregulated lipid compounds using Lipid Map’s BioPAN
online software suite [51]. Metabolic network, network diffusion, and network topology
and clustering analysis were conducted using combination of FELLA (R package) [52] and
Cytoscape software suite [53]. Changes in oxylipins (from targeted lipidomics analysis)
between HDM and control mice were evaluated by multiple t-testing using a false discov-
ery rate (FDR) of 5%. Changes in BALF cells and protein were determined using t-tests
(Graphpad Prism 9) on log transformed data, with p < 0.05 considered significant.

Gene expression read count data were converted into log2 counts using the rlog function
in DESeq2 and plotted to assess data quality [54]. The read count data was filtered for zero
counts before differential expression analysis was conducted. Differential gene expression
(log2 fold changes [log2FC]) was conducted using negative binomial generalized linear equa-
tion in DESeq2, which accounted for library size and group mean and variance internally [54].
The estimated log2FC were shrunk to aid visualization and ranking of genes and p-valued
corrected for inflation and biases using bacon package [55]. Enrichment and pathway analysis
were conducted for significantly different genes using BioMart suite retrieving GO and KEGG
molecular and functional knowledge databases [56]. Joint metabolomics and gene expres-
sion data pathway analysis were conducted using KEGG molecular knowledge databases to
understand the potential interactions and involvement between the compounds and genes
that were significantly changed between HDM-sensitized and control mice in the biological
process and molecular functions. All statistical analyses were performed using R software
version 4.1.1 (https://www.r-project.org accessed on 25 August 2021).

3. Results
3.1. Inflammatory Cells and Histopathology Changes in HDM-Sensitized Mice

BALF inflammatory cell analysis demonstrated that significant increases in macrophages,
PMNs, and eosinophils (p < 0.05) were observed in HDM-sensitized mice compared to control
(Figure 2a). Lymphocytes and epithelial cells appeared to be elevated compared to control,
but these increases were not significant, at p < 0.08 and p < 0.1720, respectively. Total protein
was also significantly elevated in HDM-sensitized mice compared to control (p < 0.0232)
(Figure 2b). These results demonstrate that an inflammatory response to HDM allergic
sensitization occurred.

The analysis of histopathological changes in lung by H&E staining showed the typical
pathological features of allergic airways and asthma in HDM-sensitized mice compared
to control (Figure 2c) including inflammatory cell infiltration, specifically peribronchial
inflammation (Figure 2d,e, red arrow, inset). Increased collagen deposition was also
observed in the HDM-exposed mice using trichome staining (Figure 2f) and some goblet
cell hyperplasia was seen in the HDM-sensitized mice compared to controls (Figure 2g).
Collectively, this model had numerous similarities to human asthma and was a valuable
model to use for our additional studies below.

3.2. Differentially Regulated Compouds (Untargeted Metabolomics) in HDM-Sensitized Mice

Following untargeted metabolomics analysis of lung tissue, 1316 compounds were
determined to be present in at least 75% of sample per group. Of these, 391 compounds were
significantly different between the HDM and control mice (adjusted p < 0.05). Most of these
compounds were not annotated and, therefore, were not pursued in downstream analysis
and interpretations such as pathway enrichment analysis. The five most significantly
upregulated compounds included 7-8-dihydro-L-biopterin, palmitoyl ethanolamide, a
phosphatidylglycerol (PG [16:0/0:0]), sphinganine, and butyryl-L-carnitine (Table S1).
The five most significantly downregulated compounds were Fagaramide, s-(5′-adenosyl)-
l-homocysteine, adenine, PC(20:4/18:0), and PC(20:3/16:0) (Table S1). Note that these
annotations were MSI level three and were hence considered putative. Changes were
visualized using volcano plots for lipids (Figure 3a) and non-lipid compounds (Figure 3b).

https://www.r-project.org


Metabolites 2023, 13, 406 6 of 21Metabolites 2023, 13, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 2. Inflammation increased in response to HDM. (a) BALF inflammatory cells, macrophages, 
polymorphonuclear leukocytes (PMNs), eosinophils, lymphocytes, and epithelial cells increased in 
response to the HDM allergen model in BALB mice. (b) Total BALF protein increased in response 
to HDM, indicative of lung hyperpermeability. Control n = 5; HDM n = 4. * p < 0.05 for HDM-sensi-
tized mice compared to control mice. Histopathology in (c–g) show differences between control (c) 
and HDM exposed mice (d–g). (c) Control mouse stained with H&E at 4 and 20× magnification (inset 
at red arrow). (d) H&E of an HDM-exposed mouse at 4× (inset from region of orange arrow in (e) 
and (e) 20× magnification. Red arrow indicates peribronchial inflammation. (f) Collagen deposition 
in the same HDM-exposed mouse in trichome stained section (trichrome, blue; black arrow). (g) 
Goblet cell hyperplasia in PAS-stained section from the same HDM-exposed mouse (PAS staining 
(pinkish purple, red arrow); counterstain light green). 

3.2. Differentially Regulated Compouds (Untargeted Metabolomics) in HDM-Sensitized Mice 
Following untargeted metabolomics analysis of lung tissue, 1316 compounds were 

determined to be present in at least 75% of sample per group. Of these, 391 compounds 
were significantly different between the HDM and control mice (adjusted p < 0.05). Most 
of these compounds were not annotated and, therefore, were not pursued in downstream 
analysis and interpretations such as pathway enrichment analysis. The five most signifi-
cantly upregulated compounds included 7-8-dihydro-L-biopterin, palmitoyl ethanola-
mide, a phosphatidylglycerol (PG [16:0/0:0]), sphinganine, and butyryl-L-carnitine (Table 
S1). The five most significantly downregulated compounds were Fagaramide, s-(5′-ade-
nosyl)-l-homocysteine, adenine, PC(20:4/18:0), and PC(20:3/16:0) (Table S1). Note that 
these annotations were MSI level three and were hence considered putative. Changes 
were visualized using volcano plots for lipids (Figure 3a) and non-lipid compounds (Fig-
ure 3b). 

Figure 3c shows number of significantly up- and downregulated compounds in each 
KEGG subclass. Most of the upregulated compounds were in diacyglycerolphosphoser-
ines, fatty acyls (including fatty acyl carnitines and primary amides), and glycerol-
phosphocholines (monoacylglycerolphosphocholines and diacylglycerolphosphocho-
lines) pathways. Note that the diacylglycerophospholipids are generally referred to as 
glycerophospholipids while the monoacylated forms are referred to as lyso-glycerophos-
pholipids; however, the KEGG nomenclature was used in the current study to allow for 
multi-omics analysis. Enrichment analysis demonstrated that the upregulated KEGG 
pathways were significantly (p-value < 0.05) enriched in glycerophospholipid metabolism, 
purine metabolism, and one carbon pool by folate pathways before FDR adjustment; 

Figure 2. Inflammation increased in response to HDM. (a) BALF inflammatory cells, macrophages,
polymorphonuclear leukocytes (PMNs), eosinophils, lymphocytes, and epithelial cells increased in
response to the HDM allergen model in BALB mice. (b) Total BALF protein increased in response to
HDM, indicative of lung hyperpermeability. Control n = 5; HDM n = 4. * p < 0.05 for HDM-sensitized
mice compared to control mice. Histopathology in (c–g) show differences between control (c) and
HDM exposed mice (d–g). (c) Control mouse stained with H&E at 4 and 20×magnification (inset at
red arrow). (d) H&E of an HDM-exposed mouse at 4× (inset from region of orange arrow in (e) and
(e) 20×magnification. Red arrow indicates peribronchial inflammation. (f) Collagen deposition in
the same HDM-exposed mouse in trichome stained section (trichrome, blue; black arrow). (g) Goblet
cell hyperplasia in PAS-stained section from the same HDM-exposed mouse (PAS staining (pinkish
purple, red arrow); counterstain light green).
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Figure 3. Differentially regulated compounds between house dust mite (HDM)-sensitized and control
(see Table S1 for details on all significant compounds). (a) Differentially regulated lipid compounds
between HDM-sensitized and control mice following metabolomics of lung tissue. The bubbles
were colored according to the class of the compounds. The x-axis shows log 2 of the foldchange
(log2 FC) and y-axis shows negative log 10 of the multiple tests adjusted p-values (padj). The com-
pounds above horizontal dashed lines show significantly upregulated (log FC > 0) and downregulated
(log FC < 0) lipid compounds. (b) Differentially regulated non-lipid compounds between house dust
mite-sensitized and control mice following metabolomics of lung tissue. The bubbles were colored
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according to the class of the compounds. The x-axis shows log 2 of the foldchange (log2 FC) and
y-axis shows negative log 10 of the multiple tests adjusted p-values (padj). The compounds above
horizontal dashed lines show significantly upregulated (log FC > 0) and downregulated (log FC < 0)
non-lipid compounds. (c) Histogram of significantly upregulated (red) and downregulated (blue)
lung tissue compounds organized by subclass (x-axis). The number of compounds in each class
(KEGG subclass 2) with significant differences between HDM-sensitized and control mice is shown.

Figure 3c shows number of significantly up- and downregulated compounds in each
KEGG subclass. Most of the upregulated compounds were in diacyglycerolphosphoserines,
fatty acyls (including fatty acyl carnitines and primary amides), and glycerolphospho-
cholines (monoacylglycerolphosphocholines and diacylglycerolphosphocholines) path-
ways. Note that the diacylglycerophospholipids are generally referred to as glycerophos-
pholipids while the monoacylated forms are referred to as lyso-glycerophospholipids;
however, the KEGG nomenclature was used in the current study to allow for multi-omics
analysis. Enrichment analysis demonstrated that the upregulated KEGG pathways were sig-
nificantly (p-value < 0.05) enriched in glycerophospholipid metabolism, purine metabolism,
and one carbon pool by folate pathways before FDR adjustment; however, none were
significant after FDR adjustment (see Figure S1 for list of pathways and Figure S2 for list of
predicted enzymes). The majority of downregulated compounds were in glycerophospho-
lipid (including diacyglycerolphosphocholines, monocyglycerolphosphocholines, diacyl-
glycerophosphoethanolamines, and 1-Z-alkenyl,2-acyglycerolphosphocholines, as shown
in Table S1), and phosphosphingolipids (including ceramide phosphoethanolamines and
ceramide phosphocholines [shingomyelins]) (Figure 3c). At least one compound was
changed in the following pathways: glycerophosphoinositols, flavonoids, purines, and
eicosanoids (only PGD2 was significant) pathways (Figure 3c). Enrichment analysis demon-
strated that the upregulated KEGG pathways were significantly (p-value < 0.05) enriched in
sphingolipid metabolism, glycerophospholipid metabolism, and taurine and hypotaurine
metabolism pathways before FDR adjustment. However, only sphingolipid metabolism
pathway was significant after FDR adjustment (see Figure S1 for list of pathways and
Figure S2 for list of predicted enzymes). Pathways such as glycerophosphatidylcholines,
phosphatidylserines, sphingoid bases, and purines contained a mix of up- and downreg-
ulated individual compounds; the results from above were based on the direction of the
majority of the compounds.

Moreover, expansion of compounds’ knowledge-based network (network diffusion)
by including KEGG metabolic pathways and GO terms indicates that the dysregulated
compounds were associated with inflammatory pathways (see Supplemental Text S1 and
Figure S3 for detail of results). In addition, since most of the significantly altered compounds
were lipids, we conducted an analysis of predicted reaction pathway for differentially
abundant lipid compounds to identify most active lipid conversions in our experiment.
The reaction prediction was conducted in Lipid Map’s BioPAN [51] software suite. The
reaction pathway prediction showed that the most active conversion pathways were from
phosphotidylcholines and phosphotidylethanolamines to phosphotidylserines and from
sphingomyelins (n-acyl-sphing-4-enine-1-phosphocholine) to ceramides (n-acyl-sphing-4-
enine) (Figure S4).

3.3. Differentially Regulated Oxylipins (Targeted Lipidomics) in HDM-Sensitized Mice

A targeted quantitation of 87 oxylipins was conducted in plasma and lung tis-
sue using mass spectrometry. Twenty-one plasma and twenty-eight lung lipid media-
tors had values above the detection limit for 80% of the samples. In plasma, 12,13-
epoxyoctadecenoic acid (12,13-EpOME; p = 0.003) and its downstream metabolites
9,10-dihydroxy-octadecenoic acid (9,10-DiHOME; p = 0.01), 12,13-dihydroxy-octadecenoic
acid (12,13-DiHOME; p = 0.02), 9-hydroxy-octadecadienoic acid (9-HODE; p = 0.03),
and 13-hydroxy-octadecadienoic acid (13-HODE; p = 0.05) were significantly higher
in the HDM group compared to control, but only 12,13-EpOME was significant (adjusted
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p = 0.07) after adjusting for multiple-testing using FDR at 10%. In addition,
analysis of lung tissue oxylipins showed that 11-hydroxydocosahexaenoic acid
(11-HDoHE, p = 0.002), 12,13-dihydroxy-octadecenic acid (12,13-DiHOME, p = 0.05),
13-hydroxyoctadecatrienoic acid (13-(S)-HOTrE; p = 0.02), 14-hydroxy-docosahexaenoic
Acid (14-HDHA, p = 0.002), 8-hydroxyeicosatetraenoic Acid (8-HETE, p = 0.002), 15-
hydroxyeicosatetraenoic Acid (15-HETE, p = 0.02), (19,20-DiHDPA, p = 0.01), 6-keto-
prostaglandin F1α (6-keto-PGF1α; p = 0.04), prostaglandin E2 (PGE2; p = 0.004) were
significantly elevated in the HDM-sensitized group; but none were significant after
adjusting for multiple testing (Figure 4; see Figures S5 and S6 for additional lipids
identified in plasma and lung samples, respectively).

3.4. Differentially Expressed Genes (Global Gene Expression) in HDM-Sensitized Mice

The global gene expression analysis of lung tissue showed that several genes
(143 genes) were differentially expressed after adjusting for multiple testing at adjusted
p-value of 0.05 and fold change cutoff value of 1.5, where the majority (88 genes) of the genes
were upregulated (Figure 5 and Table S2). The top five upregulated genes included Col24a,
Nlrp4g, Samd4b, Med29, and Ganab. Additional immune response genes that were upreg-
ulated in the HDM-sensitized group included Chil4, Chil6, Cxcr6, Macir, and Clec2g, and
metabolism related upregulated genes included Atp10d and Ivd. Although not statistically
significant, cytochrome c oxidase (Cox)-10, cytochrome P450 (Cyp450)-2E1, Cyp450-2j3, and
cytosolic phospholipase A2 (cPla2)-g4, and elongation of very long chain fatty acids protein
4 (Elov4) were among many lipid metabolism regulation genes that were upregulated with
log2 foldchange >2. The top five downregulated genes included Ces2a, Sptbn4, Hsd17b1,
Nrxn2, and Gpr137c. Additional immune response genes that were downregulated in the
HDM-sensitized mice included Btnl4, Lifr, Atm, and Zcchc9, and additional metabolism
genes that were downregulated in the HDM-sensitized mice included Mtm1, Ggta, Akt2,
Repin1, Rabgap1l, Pask, and Csad. The supportive literature for the functions of these genes
are summarized in Table S3.

To summarize the biological and molecular context of significantly expressed genes
(multiple testing adjusted p-value < 0.05), we conducted enrichment analyses using the
GO knowledge database. The GO biological process enrichment analysis showed that
the following were the most enriched biological processes pathways for significantly up-
regulated genes in the HDM-sensitized mice compared to control: regulation of cardiac
muscle (cell contraction) by regulation of the release and transportation of sequestered
calcium ion, metal ion transport, collagen fibril organization, and calcium-mediated signal-
ing. Regulation of vesicle fusion, central nervous system neuron axonogenesis, regulation
of glycogen biosynthetic process, regulation of torc1 signaling, and regulation of B-cell
proliferation were the five most enriched biological processes for downregulated genes in
HDM-sensitized mice compared to control (Table 1).

Similarly, the GO molecular function enrichment analysis of significantly expressed
genes showed that voltage-gated calcium channel activity involved in muscle cell action
potential, benzodiazepine receptor binder, solute and sodium bicarbonate symporter ac-
tivity, oncostatin M receptor activity, leukemia inhibitory factor receptor activity, and g
protein-coupled serotonin receptor binding were the five most enriched pathways for
upregulated genes. Testosterone dehydrogenase [nad] activity, phosphatidylinositol-3,5-
bisphospate 3-phosphatase activity, neuroligin family protein binding, ccr5 chemokine
receptor binding, and annealing activity were the five most downregulated molecular
functions in downregulated genes in HDM compared to control mice (Table 2).
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3.5. Joint Pathways of Differentially Regulated Metabolic Compounds and Differentially Expressed
Genes in HDM-Sensitized Mice

A joint KEGG pathways enrichment analysis was conducted for significantly changed
compounds and genes between HDM-sensitized and control mice to understand the com-
prehensive metabolic pathway dysregulation that we hypothesized as occurring with aller-
gic responses to HDM. Accordingly, glycerophospholipid and sphingolipid metabolism
were the most jointly enriched KEGG molecular pathways (Figure S7) affected by HDM sen-
sitization. In addition, joint enrichment of insulin secretion, cholinergic synapse, adrenergic
signaling in cardiomyocytes, choline metabolism, calcium signaling, and apelin signaling
pathways was seen. However, only glycerophospholipid metabolism and sphingolipid
metabolism were significant after FDR adjustment. Genes that were involved in regulation
of lipid phosphorylation, including Mtm1, Ggta, and Mtmr4, were downregulated.
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Table 1. Significantly upregulated and downregulated Go biological processes pathways following
gene expression analysis of HDM-sensitized and control mice lung tissue. The odds ratio was defined
as the ratio of the proportion of a GO term in upregulated and downregulated genes to the proportion
of this GO term in all diatom genes.

Term Odds Ratio Genes Regulation

Positive regulation of vesicle fusion 142.41 Akt2, Doc2b Down

Regulation of vesicle fusion 101.71 Akt2, Doc2b Down

Central nervous system neuron axonogenesis 64.71 Chrnb2, Sptbn4 Down

Central nervous system projection neuron axonogenesis 64.71 Chrnb2, Sptbn4 Down

Regulation of glycogen biosynthetic process 29.64 Akt2, Pask Down

Positive regulation of organelle organization 22.94 Akt2, Doc2b Down

Regulation of TORC1 signaling 21.55 Atm, Gpr137c Down

Regulation of B cell proliferation 16.15 Chrnb2, Atm Down

Organic hydroxy compound biosynthetic process 14.80 Osbpl6, Hsd17b1 Down

Regulation of calcium ion transmembrane transport
via high voltage-gated calcium channel 52.66 Camk2d, Cacna2d1 Up

Regulation of cardiac muscle contraction by regulation of
the release of sequestered calcium ion 31.59 Ryr2, Camk2d Up

Cardiac muscle cell contraction 27.87 Camk2d, Cacna2d1 Up

Regulation of cardiac muscle contraction by calcium ion signaling 24.93 Ryr2, Camk2d Up

Calcium ion transport into cytosol 24.93 Ryr2, Cacna2d1 Up

Calcium-mediated signaling using intracellular calcium source 24.93 Ryr2, Stimate Up

Regulation of release of sequestered calcium ion into cytosol by
sarcoplasmic reticulum 22.55 Ryr2, Camk2d Up

Regulation of calcium ion transmembrane transport 22.55 Camk2d, Cacna2d1 Up

Regulation of cardiac muscle cell action potential 20.59 Ryr2, Camk2d Up

Regulation of cardiac muscle cell contraction 18.94 Ryr2, Camk2d Up

Cytosolic calcium ion transport 18.21 Ryr2, Cacna2d1 Up

Ion homeostasis 16.91 Slc4a8, Camk2d Up

Cardiac muscle cell action potential involved in contraction 16.33 Ryr2, Cacna2d1 Up

Cardiac muscle contraction 14.79 Ryr2, Camk2d Up

Metal ion transport 8.43 Ryr2, Cacna2d1, Cdh23 Up

Collagen fibril organization 8.33 Col24a1, Col11a2, Col19a1 Up

Calcium-mediated signaling 7.23 Ryr2, Stimate, Cxcr6 Up

Table 2. Significantly upregulated and downregulated GO Molecular processes pathways following
gene expression analysis of HDM-sensitized and control mice lung tissue. The odds ratio was defined
as the ratio of the proportion of a GO term in upregulated and downregulated genes to the proportion
of this GO term in all diatom genes.

Term Odds.Ratio Genes Regulation

Testosterone dehydrogenase [NAD(P)] activity 87.45 Hsd17b1 Down

Chromatin insulator sequence binding 87.45 Repin1 Down

RNA strand annealing activity 87.45 Eif4b Down

Neuroligin family protein binding 87.45 Nrxn2 Down

CCR5 chemokine receptor binding 87.45 Cnih4 Down

Phosphatidylinositol-3,5-bisphosphate 3-phosphatase activity 87.45 Mtm1 Down
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Table 2. Cont.

Term Odds.Ratio Genes Regulation

Annealing activity 87.45 Eif4b Down

Oncostatin M receptor activity 69.95 Lifr Down

Leukemia inhibitory factor receptor activity 69.95 Lifr Down

Mannosyl-oligosaccharide 1,2-alpha-mannosidase activity 58.29 Man1b1 Down

Mannosyl-oligosaccharide mannosidase activity 58.29 Man1b1 Down

Phosphatidylinositol-3,5-bisphosphate phosphatase activity 58.29 Mtm1 Down

Estradiol 17-beta-dehydrogenase activity 49.96 Hsd17b1 Down

Ciliary neurotrophic factor receptor activity 49.96 Lifr Down

Ciliary neurotrophic factor receptor binding 43.71 Lifr Down

1-phosphatidylinositol-3-kinase activity 38.86 Atm Down

Acetylcholine-gated cation-selective channel activity 34.97 Chrnb2 Down

Phosphatidylinositol 3-kinase activity 31.79 Atm Down

Water channel activity 29.14 Aqp6 Down

Phosphatidylinositol kinase activity 24.97 Atm Down

Water transmembrane transporter activity 24.97 Aqp6 Down

Phosphatidylinositol-3-phosphatase activity 24.97 Mtm1 Down

Nuclear import signal receptor activity 23.31 Ipo4 Down

Ribosomal small subunit binding 21.85 Eif4b Down

Phosphatidylinositol monophosphate phosphatase activity 21.85 Mtm1 Down

phosphatidylinositol binding 7.88 Pask, Mtm1 Down

Benzodiazepine receptor binding 58.56 Tspoap1 Up

Voltage-gated calcium channel activity involved in
cardiac muscle cell action potential 58.56 Cacna2d1 Up

Oncostatin M receptor activity 46.84 Prlr Up

Sodium:bicarbonate symporter activity 46.84 Slc4a8 Up

Solute:bicarbonate symporter activity 46.84 Slc4a8 Up

Alpha-glucosidase activity 46.84 Ganab Up

Leukemia inhibitory factor receptor activity 46.84 Prlr Up

G protein-coupled serotonin receptor binding 46.84 Gna11 Up

Bicarbonate transmembrane transporter activity 36.45 Slc4a8, Slc26a3 Up

Chloride transmembrane transporter activity 33.84 Slc4a8, Slc26a3 Up

Ciliary neurotrophic factor receptor activity 33.46 Prlr Up

Sodium channel inhibitor activity 33.46 Camk2d Up

Glucosidase activity 33.46 Ganab Up

Ciliary neurotrophic factor receptor binding 29.27 Prlr Up

Oxalate transmembrane transporter activity 29.27 Slc26a3 Up

Acyl-CoA dehydrogenase activity 29.27 Ivd Up

Lys63-specific deubiquitinase activity 26.02 Otud4 Up

Intracellular ligand-gated ion channel activity 23.42 Ryr2 Up

Small GTPase binding 4.15 Unc13b, Dock4, Golga5 Up

4. Discussion

This study aimed to better understand the effects of allergen sensitization on metabolic
and immune signaling pathways by comparing small molecule and gene expression differ-
ences between HDM-sensitized and control mice using a multi-omics approach. Overall,
our findings confirmed previous results by our group [13] and others that demonstrated
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the dysregulation of purine, glycerophospholipid, and sphingolipid metabolism, as well
as the AA and LA oxidation products 9-HODE and 12,13-EpOME (and its downstream
metabolites) in allergen-sensitized mice. Furthermore, the current study demonstrated that
additional signaling pathways, such as cardiolipin and insulin secretion pathways, were
dysregulated in allergen-sensitized mice.

Our results from untargeted metabolomics indicated that the majority of dysregu-
lated compounds were glycerophospholipids, similar to previous reports [12,57]. Com-
pounds within the class of phosphosphingolipids and certain sub-classes of glycerophos-
pholipids, including glycerophosphatidylcholines, glycerophosphatidylethanolamines, and
glycerophosphatidylinositols were downregulated, whereas diacyglycerolphosphoserines
and glycerophosphate were upregulated. These compounds are all part of the highly
interconnected glycerophospholipid pathway, whereby glycerophosphate (1,2-diacyl-sn-
glycerol-3-phosphate) acts as a precursor to the glycerophospholipids through the in-
termediates phosphatidic acid, sn-1,2-diacylglycerol, and/or CDP-diacylglycerol. Sim-
ilarly, the diacylglycerophospholipids are metabolized to corresponding monoacylated
forms and can also be used to generate phosphatidic acid. It is possible that glycerophos-
phatidylcholines, glycerophosphatidylethanolamines, and glycerophosphatidylinositols
were depleted to meet cellular demands during inflammation. For example, the pre-
diction model based on our data shows that, in HDM-sensitized mice, phosphatidyl-
cholines and phosphatidylethanolamines were actively converting to phosphatidylserines,
whereas sphingomyelins were actively converting to ceramides. Under normal physio-
logical conditions, significant amounts of phosphatidylserines turn over to form phos-
phatidylethanolamines [58]; however, the conversion may be reversed in disease-like
conditions, such as allergic airways.

The importance of phospholipids in asthma pathogenesis were previously described [59].
For example, phosphatidylcholines were decreased in asthmatic lungs [12,57] and children
with risk allelles in the 17q12-21 genetic region have decreased sphingolipid synthesis [60].
This is consistent with our finding that glycerophosphatidylcholine levels were decreased in
sensitized mouse lung. Similarly, decreased levels of glycerophosphatidylethanolamines and
glycerophosphatidylinositols and increased diacyglycerolphosphoserines in plasma samples
among asthmatic patients were previously observed [61]. Although not directly measured
in the current study, the observed downregulation of glycerophosphatidylcholines in lung
following allergic sensitization may be interpreted to reflect metabolism of EPA or DHA via
cPLA2 to more pro-resolving and/or anti-inflammatory oxylipins. In addition, glycerophos-
photidylcholines have roles in anti-inflammatory mechanisms including suppression of TNF
production in macrophages and interference with pro-inflammatory cytokines secreted by
phagocytes [62–64]. Finally, the precursor of diacyglycerolphosphoserines, phosphatidylserine,
may play an important role in T2 immune response induction and airway hyperreactivity [65].
Thus, by extension, upregulated diacyglycerolphosphoserines in HDM-sensitized mice in our
study is consistent with allergic asthma pathogenesis.

As previously mentioned, membrane glycerophospholipids such as glycerophos-
phoserine contain fatty acids such as AA, LA, EPA, and DHA, which are precursors of
bioactive lipid mediators such as oxylipins and endocannabinoids [66–69]. While the
untargeted metabolomics analysis of lung tissue showed that most glycerophospholipids
were decreased in HDM-sensitized mice, the targeted analysis of oxylipins in the same
tissue led to an increase in these bioactive lipids in HDM-sensitized mice. In addition,
we observed upregulated but statistically insignificant genes related to the release and
metabolism of membrane fatty acids to bioactive lipids such as Cox, Cyp450s, and cPla2 as
well as calcium binding regulator genes. Thus, based on the observed depletion of glyc-
erophospholipids and increased oxylipins, along with the upregulation of related genes, we
speculate that allergic sensitization results in a conversion of membrane lipids to oxylipins.
In support of this, we observed increases in AA-derived 8-HETE, 15-HETE, PGE2, and
6-keto-α-prostaglandin F1α (6keto-α-PF1α), which are known for both pro-inflammatory
and anti-inflammatory properties often depending on receptor and tissue type (see Figure 6
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for illustration). For example, PGE2 was shown to increase mast cell degranulation and IL-6
production, IL-8-induced neutrophil recruitment, vasodilation, among others [70]. 6-keto-
α-prostaglandin F1α is a less potent and stable derivative of prostacyclin I2 (PGI2) known
to serve as antiplatelet aggregation though the upregulation of cAMP activities [71,72] and
immune regulators [73].
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Figure 6. Allergy sensitization lipid regulation pathway. Pathways were constructed using results
from current study (in blue boxes for metabolites and green for gene pathway) and previously
published studies. Gray boxes show enzymes involved in bioactive lipids synthesis (related genes
were upregulated, but not significant). The thick orange and blue arrows show the direction of the
signaling pathways’ regulations based on previous studies.

Increased LA oxidation products such as 9-HODE and 12,13-EpOME (and its down-
stream metabolites 9,10-DiHOME and 12,13-DiHOME) were also observed in HDM-
sensitized mice, which is consistent with their known pro-inflammatory roles. For ex-
ample, 9-HODE plays a role in inflammation by activating the G protein coupled receptor
132 (G2A), inhibiting the peroxisome proliferator-activated receptor γ (PPARγ), and increas-
ing production of inflammatory cytokines such as IL-6, IL-8, and GM-CSF [74]. Similarly,
12,13-EpOME (and its downstream metabolites) increased inflammation by activating NF-
κB and AP-1 transcription factors and inhibiting PPARγ [75–77]. Generally, increased LA
oxidation products associate with features of severe airway obstruction, lung remodeling,
increase in epithelial stress related to pro-inflammatory cytokines and airway neutrophilia
in mice [78]. A potential future intervention study could inhibit LA oxidation to determine
if the inflammatory response to allergic challenges and symptoms of asthma improve.

Alpha linoleic acid (αLA) and DHA-derived oxylipins known for their pro-resolving
characteristics were also increased in sensitized mice. For example, 13-(S)-HOTrE, which
is derived from αLA, exhibited anti-inflammation properties through inhibition of NF-κB
and NLRP3 and through activation of PPARγ [79,80]. Likewise, DHA-derived 19,20-
DiHDPA was shown to modulate leukocyte recruitment and infiltration via reduced
ICAM-1 and E-selectin expression in endothelial cells [81,82]. The increase in these
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oxylipins during HDM sensitization suggests a counterbalance exists between pro-
inflammatory and pro-resolving oxylipins.

Moreover, lipids are also known to modulate the activity of voltage-gated ion channels
including calcium channel and G protein–signaling mechanisms [83,84]. As previously
mentioned, phospholipases such as cPLA2 hydrolyze glycerophospholipids by binding
to membrane G-protein-coupled receptors and releasing free fatty acids, such as AA and
LA, from the membrane [85,86]. Our pathway analysis of differentially expressed genes
confirmed the involvement of ion channels and bioactive lipids signaling pathways during
HDM sensitization. We observed the upregulation of pathways such as release and trans-
portation of sequestered calcium ion release, sequestration and transportation, metal ion
transport, collagen fibril organization, and calcium mediated signaling in sensitized mice.
The increase in Ca2+ in cytoplasm is associated with asthma pathology including activation
of respiratory smooth muscle, mast cells, vagal reflex stimulation, secretion of the airway
submucous glands, and chemotaxis of eosinophils [87,88]. Based on combined results from
gene expression and metabolomics data, we speculate that one effect of Ca2+ on asthma
pathology may be through modulation of lipid signaling pathways.

This study used multi-omics to comprehensively illustrate molecular pathways in-
volved during allergic sensitization in an animal model; however, it did have several
limitations. First, the experiment was only conducted in male mice, which limited our
ability to explore sex differences. Second, the lung tissue sample had to be rationed for
histology, untargeted metabolomics, targeted lipidomics, and global gene expression data
generation from different mice; thus, the metabolomics and gene expression data were
not generated from the same animal. Third, the lung lobes for the omics studies were not
perfused and, therefore, may have contained blood. While this could have impacted the
responses observed, the filtering of compounds during data processing and the application
of MTC during data analysis minimized the potential for artifacts related to blood con-
tamination. In addition, previous studies utilized non-perfused tissues for molecular and
omics research since immune cells infiltrate the lung via the blood and may contribute to
the inflammatory response observed. Finally, the majority of our metabolomics data were
annotated to an MSI level three and may have included mis-annotations, which can affect
downstream pathway analysis.

5. Conclusions

The metabolomics data demonstrated downregulation of glycerophosphatidylcholines,
glycerophosphatidylethanolamines, phosphosphingolipids, and glycerophosphoinositols,
whereas several diacyglycerolphosphoserines and glycerophosphate were upregulated
in HDM-sensitized mice. A focused analysis of oxylipins from lung tissue and plasma
showed consistent results with previous studies linking decreased glycerophospholipid and
sphingolipid compounds with increased bronchoreactivity and increased 12,13-EpOME
(and its downstream compounds) and prostaglandins with allergic sensitization. The global
gene expression analysis added another layer by linking differential changes in bioactive
lipids to up- and downregulated signaling pathways such as calcium ion channels and
G protein–signaling. For example, calcium channels and G protein–signaling modulate
cPLA2 for the release of membrane lipids, which are substrates for downstream bioactive
lipids. In summary, our study, using multi-omic analyses of mouse lung tissue during
HDM sensitization, provided additional insight into molecular cascades during allergic
sensitization including supporting known roles for AA metabolism.
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